home *** CD-ROM | disk | FTP | other *** search
/ Interactive Algebra & Tri…f Guided Study Companion / Interactive Algebra and Trigonometry - A Self-Guided Study Companion.iso / tutor / chap_2 / 2-1-1.tut next >
Unknown  |  1996-07-15  |  6.0 KB

open in: MacOS 8.1     |     Win98     |     DOS

view JSON data     |     view as text


This file was not able to be converted.
This format is not currently supported by dexvert.

ConfidenceProgramDetectionMatch TypeSupport
1% dexvert Eclipse Tutorial (other/eclipseTutorial) ext Unsupported
1% dexvert JuggleKrazy Tutorial (other/juggleKrazyTutorial) ext Unsupported
100% file data default
100% gt2 Kopftext: 'TUTOR 06' default (weak)



hex view
+--------+-------------------------+-------------------------+--------+--------+
|00000000| 54 55 54 4f 52 20 30 36 | fa 16 00 00 f0 00 00 00 |TUTOR 06|........|
|00000010| 43 68 61 70 74 65 72 20 | 32 20 20 46 75 6e 63 74 |Chapter |2 Funct|
|00000020| 69 6f 6e 73 20 61 6e 64 | 20 74 68 65 69 72 20 47 |ions and| their G|
|00000030| 72 61 70 68 73 0d 0b 00 | 16 32 2d 69 6e 64 65 78 |raphs...|.2-index|
|00000040| 16 14 63 68 61 70 31 2e | 68 69 14 30 14 31 14 37 |..chap1.|hi.0.1.7|
|00000050| 38 14 31 38 14 0d 0a 00 | 0d 0a 00 20 20 20 20 20 |8.18....|... |
|00000060| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 10 32 2d | | .2-|
|00000070| 70 72 65 0e 70 72 65 69 | 6e 74 72 6f 2d 32 0e 43 |pre.prei|ntro-2.C|
|00000080| 68 61 70 74 65 72 20 57 | 61 72 6d 20 75 70 0f 0d |hapter W|arm up..|
|00000090| 0a 00 0d 0b 00 20 20 20 | 20 20 0e 73 32 2d 31 0e |..... | .s2-1.|
|000000a0| 53 65 63 74 69 6f 6e 20 | 32 2e 31 0f 20 20 4c 69 |Section |2.1. Li|
|000000b0| 6e 65 73 20 69 6e 20 74 | 68 65 20 50 6c 61 6e 65 |nes in t|he Plane|
|000000c0| 0d 0a 00 0d 0b 00 20 20 | 20 20 20 10 32 2d 32 2d |...... | .2-2-|
|000000d0| 31 0e 73 32 2d 32 0e 53 | 65 63 74 69 6f 6e 20 32 |1.s2-2.S|ection 2|
|000000e0| 2e 32 0f 20 20 46 75 6e | 63 74 69 6f 6e 73 0d 0a |.2. Fun|ctions..|
|000000f0| 00 0d 0b 00 20 20 20 20 | 20 10 32 2d 33 2d 31 0e |.... | .2-3-1.|
|00000100| 73 32 2d 33 0e 53 65 63 | 74 69 6f 6e 20 32 2e 33 |s2-3.Sec|tion 2.3|
|00000110| 0f 20 20 41 6e 61 6c 79 | 7a 69 6e 67 20 47 72 61 |. Analy|zing Gra|
|00000120| 70 68 73 20 6f 66 20 46 | 75 6e 63 74 69 6f 6e 73 |phs of F|unctions|
|00000130| 0d 0a 00 0d 0b 00 20 20 | 20 20 20 10 32 2d 34 2d |...... | .2-4-|
|00000140| 31 0e 73 32 2d 34 0e 53 | 65 63 74 69 6f 6e 20 32 |1.s2-4.S|ection 2|
|00000150| 2e 34 0f 20 20 54 72 61 | 6e 73 6c 61 74 69 6f 6e |.4. Tra|nslation|
|00000160| 73 20 61 6e 64 20 43 6f | 6d 62 69 6e 61 74 69 6f |s and Co|mbinatio|
|00000170| 6e 73 0d 0a 00 0d 0b 00 | 20 20 20 20 20 10 32 2d |ns......| .2-|
|00000180| 35 2d 31 0e 73 32 2d 35 | 0e 53 65 63 74 69 6f 6e |5-1.s2-5|.Section|
|00000190| 20 32 2e 35 0f 20 20 49 | 6e 76 65 72 73 65 20 46 | 2.5. I|nverse F|
|000001a0| 75 6e 63 74 69 6f 6e 73 | 0d 0a 00 0d 0b 00 20 20 |unctions|...... |
|000001b0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000001c0| 10 32 2d 70 6f 73 74 0e | 70 6f 73 74 69 6e 74 72 |.2-post.|postintr|
|000001d0| 6f 2d 32 0e 43 68 61 70 | 74 65 72 20 50 6f 73 74 |o-2.Chap|ter Post|
|000001e0| 2d 74 65 73 74 0f 0d 0a | 00 0d 0b 00 53 65 63 74 |-test...|....Sect|
|000001f0| 69 6f 6e 20 32 2e 31 20 | 20 4c 69 6e 65 73 20 69 |ion 2.1 | Lines i|
|00000200| 6e 20 74 68 65 20 50 6c | 61 6e 65 0d 0b 00 46 6f |n the Pl|ane...Fo|
|00000210| 72 20 6d 6f 72 65 20 70 | 72 61 63 74 69 63 65 3a |r more p|ractice:|
|00000220| 0d 0a 00 0d 0a 00 20 20 | 20 20 20 10 32 2d 31 2d |...... | .2-1-|
|00000230| 33 0e 78 32 2d 31 0e 45 | 78 65 72 63 69 73 65 73 |3.x2-1.E|xercises|
|00000240| 0f 0d 0a 00 20 20 20 20 | 20 10 32 2d 31 2d 32 0e |.... | .2-1-2.|
|00000250| 65 32 2d 31 0e 47 75 69 | 64 65 64 20 45 78 65 72 |e2-1.Gui|ded Exer|
|00000260| 63 69 73 65 73 0f 0d 0a | 00 0d 0a 00 54 6f 70 69 |cises...|....Topi|
|00000270| 63 73 20 66 6f 72 20 65 | 78 70 6c 6f 72 61 74 69 |cs for e|xplorati|
|00000280| 6f 6e 3a 0d 0a 00 0d 0a | 00 20 20 20 20 20 0e 73 |on:.....|. .s|
|00000290| 32 2d 31 2d 31 0e 53 6c | 6f 70 65 20 6f 66 20 61 |2-1-1.Sl|ope of a|
|000002a0| 20 4c 69 6e 65 0f 0d 0a | 00 20 20 20 20 20 0e 73 | Line...|. .s|
|000002b0| 32 2d 31 2d 32 0e 50 6f | 69 6e 74 2d 53 6c 6f 70 |2-1-2.Po|int-Slop|
|000002c0| 65 20 46 6f 72 6d 20 6f | 66 20 74 68 65 20 45 71 |e Form o|f the Eq|
|000002d0| 75 61 74 69 6f 6e 20 6f | 66 20 61 20 4c 69 6e 65 |uation o|f a Line|
|000002e0| 0f 0d 0a 00 20 20 20 20 | 20 0e 73 32 2d 31 2d 33 |.... | .s2-1-3|
|000002f0| 0e 4c 69 6e 65 61 72 20 | 45 78 74 72 61 70 6f 6c |.Linear |Extrapol|
|00000300| 61 74 69 6f 6e 20 61 6e | 64 20 4c 69 6e 65 61 72 |ation an|d Linear|
|00000310| 20 49 6e 74 65 72 70 6f | 6c 61 74 69 6f 6e 0f 0d | Interpo|lation..|
|00000320| 0a 00 20 20 20 20 20 0e | 73 32 2d 31 2d 34 0e 53 |.. .|s2-1-4.S|
|00000330| 6c 6f 70 65 2d 49 6e 74 | 65 72 63 65 70 74 20 46 |lope-Int|ercept F|
|00000340| 6f 72 6d 20 6f 66 20 74 | 68 65 20 45 71 75 61 74 |orm of t|he Equat|
|00000350| 69 6f 6e 20 6f 66 20 61 | 20 4c 69 6e 65 0f 0d 0a |ion of a| Line...|
|00000360| 00 20 20 20 20 20 0e 73 | 32 2d 31 2d 35 0e 53 75 |. .s|2-1-5.Su|
|00000370| 6d 6d 61 72 79 20 6f 66 | 20 45 71 75 61 74 69 6f |mmary of| Equatio|
|00000380| 6e 73 20 6f 66 20 4c 69 | 6e 65 73 0f 0d 0a 00 20 |ns of Li|nes.... |
|00000390| 20 20 20 20 0e 73 32 2d | 31 2d 36 0e 50 61 72 61 | .s2-|1-6.Para|
|000003a0| 6c 6c 65 6c 20 4c 69 6e | 65 73 0f 0d 0a 00 20 20 |llel Lin|es.... |
|000003b0| 20 20 20 0e 73 32 2d 31 | 2d 37 0e 50 65 72 70 65 | .s2-1|-7.Perpe|
|000003c0| 6e 64 69 63 75 6c 61 72 | 20 4c 69 6e 65 73 0f 0d |ndicular| Lines..|
|000003d0| 0a 00 53 65 63 74 69 6f | 6e 20 32 2e 31 20 20 4c |..Sectio|n 2.1 L|
|000003e0| 69 6e 65 73 20 69 6e 20 | 74 68 65 20 50 6c 61 6e |ines in |the Plan|
|000003f0| 65 0d 0b 00 54 68 65 20 | 12 31 73 6c 6f 70 65 12 |e...The |.1slope.|
|00000400| 30 20 11 33 6d 20 11 31 | 6f 66 20 61 20 6e 6f 6e |0 .3m .1|of a non|
|00000410| 76 65 72 74 69 63 61 6c | 20 6c 69 6e 65 20 70 61 |vertical| line pa|
|00000420| 73 73 69 6e 67 20 74 68 | 72 6f 75 67 68 20 74 68 |ssing th|rough th|
|00000430| 65 20 70 6f 69 6e 74 73 | 0d 0a 00 0d 0b 00 20 20 |e points|...... |
|00000440| 20 20 20 28 11 33 78 20 | 11 31 2c 20 11 33 79 20 | (.3x |.1, .3y |
|00000450| 29 20 20 11 31 61 6e 64 | 20 20 11 33 28 78 20 11 |) .1and| .3(x .|
|00000460| 31 2c 20 11 33 79 20 11 | 31 29 0d 0b 00 20 20 20 |1, .3y .|1)... |
|00000470| 20 20 20 20 11 32 31 20 | 20 20 31 20 20 20 20 20 | .21 | 1 |
|00000480| 20 20 20 20 20 32 20 20 | 20 32 0d 0a 00 11 31 69 | 2 | 2....1i|
|00000490| 73 20 67 69 76 65 6e 20 | 62 79 0d 0a 00 20 20 20 |s given |by... |
|000004a0| 20 20 20 20 20 20 11 33 | 79 20 20 11 31 2d 20 11 | .3|y .1- .|
|000004b0| 33 79 0d 0b 00 20 20 20 | 20 20 20 20 20 20 20 11 |3y... | .|
|000004c0| 32 32 20 20 20 20 31 20 | 20 20 11 31 63 68 61 6e |22 1 | .1chan|
|000004d0| 67 65 20 69 6e 20 11 33 | 79 0d 0b 00 20 20 20 20 |ge in .3|y... |
|000004e0| 20 6d 20 11 31 3d 20 11 | 34 32 32 32 32 32 32 32 | m .1= .|42222222|
|000004f0| 20 11 31 3d 20 11 34 32 | 32 32 32 32 32 32 32 32 | .1= .42|22222222|
|00000500| 32 32 20 11 31 2c 20 20 | 77 68 65 72 65 20 11 33 |22 .1, |where .3|
|00000510| 78 20 20 11 34 3d 20 11 | 33 78 20 11 31 2e 0d 0b |x .4= .|3x .1...|
|00000520| 00 20 20 20 20 20 20 20 | 20 20 11 33 78 20 20 11 |. | .3x .|
|00000530| 31 2d 20 11 33 78 20 20 | 20 20 11 31 63 68 61 6e |1- .3x | .1chan|
|00000540| 67 65 20 69 6e 20 11 33 | 78 20 20 20 20 20 20 20 |ge in .3|x |
|00000550| 20 20 20 20 11 32 31 20 | 20 20 20 32 0d 0b 00 20 | .21 | 2... |
|00000560| 20 20 20 20 20 20 20 20 | 20 32 20 20 20 20 31 0d | | 2 1.|
|00000570| 0a 00 11 31 4e 6f 74 65 | 20 74 68 61 74 20 77 65 |...1Note| that we|
|00000580| 20 64 6f 20 6e 6f 74 20 | 64 65 66 69 6e 65 20 74 | do not |define t|
|00000590| 68 65 20 73 6c 6f 70 65 | 20 6f 66 20 61 20 76 65 |he slope| of a ve|
|000005a0| 72 74 69 63 61 6c 20 6c | 69 6e 65 2e 0d 0a 00 0d |rtical l|ine.....|
|000005b0| 0a 00 57 65 20 63 61 6e | 20 6d 61 6b 65 20 74 68 |..We can| make th|
|000005c0| 65 20 66 6f 6c 6c 6f 77 | 69 6e 67 20 67 65 6e 65 |e follow|ing gene|
|000005d0| 72 61 6c 69 7a 61 74 69 | 6f 6e 73 20 61 62 6f 75 |ralizati|ons abou|
|000005e0| 74 20 74 68 65 20 73 6c | 6f 70 65 20 6f 66 20 61 |t the sl|ope of a|
|000005f0| 20 6c 69 6e 65 2e 0d 0a | 00 0d 0b 00 20 20 31 2e | line...|.... 1.|
|00000600| 20 20 41 20 6c 69 6e 65 | 20 77 69 74 68 20 12 31 | A line| with .1|
|00000610| 70 6f 73 69 74 69 76 65 | 20 73 6c 6f 70 65 12 30 |positive| slope.0|
|00000620| 20 28 11 33 6d 20 11 31 | 3e 20 30 29 20 72 69 73 | (.3m .1|> 0) ris|
|00000630| 65 73 20 66 72 6f 6d 20 | 6c 65 66 74 20 74 6f 20 |es from |left to |
|00000640| 72 69 67 68 74 2e 0d 0a | 00 20 20 32 2e 20 20 41 |right...|. 2. A|
|00000650| 20 6c 69 6e 65 20 77 69 | 74 68 20 12 31 7a 65 72 | line wi|th .1zer|
|00000660| 6f 20 73 6c 6f 70 65 12 | 30 20 28 11 33 6d 20 11 |o slope.|0 (.3m .|
|00000670| 31 3d 20 30 29 20 69 73 | 20 68 6f 72 69 7a 6f 6e |1= 0) is| horizon|
|00000680| 74 61 6c 2e 0d 0a 00 20 | 20 33 2e 20 20 41 20 6c |tal.... | 3. A l|
|00000690| 69 6e 65 20 77 69 74 68 | 20 12 31 6e 65 67 61 74 |ine with| .1negat|
|000006a0| 69 76 65 20 73 6c 6f 70 | 65 12 30 20 28 11 33 6d |ive slop|e.0 (.3m|
|000006b0| 20 11 31 3c 20 30 29 20 | 66 61 6c 6c 73 20 66 72 | .1< 0) |falls fr|
|000006c0| 6f 6d 20 6c 65 66 74 20 | 74 6f 20 72 69 67 68 74 |om left |to right|
|000006d0| 2e 0d 0a 00 20 20 34 2e | 20 20 41 20 6c 69 6e 65 |.... 4.| A line|
|000006e0| 20 77 69 74 68 20 12 31 | 75 6e 64 65 66 69 6e 65 | with .1|undefine|
|000006f0| 64 20 73 6c 6f 70 65 12 | 30 20 69 73 20 76 65 72 |d slope.|0 is ver|
|00000700| 74 69 63 61 6c 2e 0d 0a | 00 53 65 63 74 69 6f 6e |tical...|.Section|
|00000710| 20 32 2e 31 20 20 4c 69 | 6e 65 73 20 69 6e 20 74 | 2.1 Li|nes in t|
|00000720| 68 65 20 50 6c 61 6e 65 | 0d 0b 00 54 68 65 20 12 |he Plane|...The .|
|00000730| 31 70 6f 69 6e 74 2d 73 | 6c 6f 70 65 20 66 6f 72 |1point-s|lope for|
|00000740| 6d 12 30 20 6f 66 20 74 | 68 65 20 65 71 75 61 74 |m.0 of t|he equat|
|00000750| 69 6f 6e 20 6f 66 20 61 | 20 6c 69 6e 65 20 77 69 |ion of a| line wi|
|00000760| 74 68 20 73 6c 6f 70 65 | 20 11 33 6d 20 11 31 61 |th slope| .3m .1a|
|00000770| 6e 64 20 70 61 73 73 69 | 6e 67 0d 0a 00 74 68 72 |nd passi|ng...thr|
|00000780| 6f 75 67 68 20 74 68 65 | 20 70 6f 69 6e 74 20 28 |ough the| point (|
|00000790| 11 33 78 20 11 31 2c 20 | 11 33 79 20 11 31 29 20 |.3x .1, |.3y .1) |
|000007a0| 69 73 0d 0b 00 20 20 20 | 20 20 20 20 20 20 20 20 |is... | |
|000007b0| 20 20 20 20 20 20 20 20 | 20 11 32 31 20 20 20 31 | | .21 1|
|000007c0| 0d 0a 00 20 20 20 20 20 | 20 20 20 20 20 20 11 33 |... | .3|
|000007d0| 79 20 11 31 2d 20 11 33 | 79 20 20 11 31 3d 20 11 |y .1- .3|y .1= .|
|000007e0| 33 6d 11 31 28 11 33 78 | 20 11 31 2d 20 11 33 78 |3m.1(.3x| .1- .3x|
|000007f0| 20 11 31 29 2e 0d 0b 00 | 20 20 20 20 20 20 20 20 | .1)....| |
|00000800| 20 20 20 20 20 20 20 20 | 11 32 31 20 20 20 20 20 | |.21 |
|00000810| 20 20 20 20 20 31 0d 0a | 00 11 31 54 68 65 20 70 | 1..|..1The p|
|00000820| 6f 69 6e 74 2d 73 6c 6f | 70 65 20 66 6f 72 6d 20 |oint-slo|pe form |
|00000830| 63 61 6e 20 62 65 20 75 | 73 65 64 20 74 6f 20 66 |can be u|sed to f|
|00000840| 69 6e 64 20 74 68 65 20 | 65 71 75 61 74 69 6f 6e |ind the |equation|
|00000850| 20 6f 66 20 61 20 6c 69 | 6e 65 20 70 61 73 73 69 | of a li|ne passi|
|00000860| 6e 67 20 0d 0a 00 74 68 | 72 6f 75 67 68 20 74 77 |ng ...th|rough tw|
|00000870| 6f 20 70 6f 69 6e 74 73 | 20 28 11 33 78 20 11 31 |o points| (.3x .1|
|00000880| 2c 20 11 33 79 20 11 31 | 29 20 61 6e 64 20 28 11 |, .3y .1|) and (.|
|00000890| 33 78 20 11 31 2c 20 11 | 33 79 20 11 31 29 2e 20 |3x .1, .|3y .1). |
|000008a0| 20 46 69 72 73 74 2c 20 | 77 65 20 75 73 65 20 74 | First, |we use t|
|000008b0| 68 65 20 66 6f 72 6d 75 | 6c 61 20 66 6f 72 20 74 |he formu|la for t|
|000008c0| 68 65 20 0d 0b 00 20 20 | 20 20 20 20 20 20 20 20 |he ... | |
|000008d0| 20 20 20 20 20 20 20 20 | 20 20 20 11 32 31 20 20 | | .21 |
|000008e0| 20 31 20 20 20 20 20 20 | 20 20 32 20 20 20 32 0d | 1 | 2 2.|
|000008f0| 0a 00 11 31 73 6c 6f 70 | 65 20 6f 66 20 74 68 65 |...1slop|e of the|
|00000900| 20 6c 69 6e 65 20 70 61 | 73 73 69 6e 67 20 74 68 | line pa|ssing th|
|00000910| 72 6f 75 67 68 20 74 77 | 6f 20 70 6f 69 6e 74 73 |rough tw|o points|
|00000920| 2e 0d 0a 00 20 20 20 20 | 20 20 20 20 20 20 20 20 |.... | |
|00000930| 20 20 20 20 20 20 20 20 | 11 33 79 20 20 11 31 2d | |.3y .1-|
|00000940| 20 11 33 79 0d 0b 00 20 | 20 20 20 20 20 20 20 20 | .3y... | |
|00000950| 20 20 20 20 20 20 20 20 | 20 20 20 20 11 32 32 20 | | .22 |
|00000960| 20 20 20 31 0d 0b 00 20 | 20 20 20 20 20 20 20 20 | 1... | |
|00000970| 20 20 20 20 20 20 20 11 | 33 6d 20 11 31 3d 20 11 | .|3m .1= .|
|00000980| 34 32 32 32 32 32 32 32 | 0d 0b 00 20 20 20 20 20 |42222222|... |
|00000990| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 11 | | .|
|000009a0| 33 78 20 20 11 31 2d 20 | 11 33 78 0d 0b 00 20 20 |3x .1- |.3x... |
|000009b0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000009c0| 20 20 20 11 32 32 20 20 | 20 20 31 0d 0a 00 11 31 | .22 | 1....1|
|000009d0| 54 68 65 6e 2c 20 6f 6e | 63 65 20 77 65 20 6b 6e |Then, on|ce we kn|
|000009e0| 6f 77 20 74 68 65 20 73 | 6c 6f 70 65 2c 20 77 65 |ow the s|lope, we|
|000009f0| 20 75 73 65 20 74 68 65 | 20 70 6f 69 6e 74 2d 73 | use the| point-s|
|00000a00| 6c 6f 70 65 20 66 6f 72 | 6d 20 74 6f 20 6f 62 74 |lope for|m to obt|
|00000a10| 61 69 6e 20 74 68 65 0d | 0a 00 65 71 75 61 74 69 |ain the.|..equati|
|00000a20| 6f 6e 20 0d 0a 00 20 20 | 20 20 20 20 20 20 20 20 |on ... | |
|00000a30| 20 20 20 20 11 33 79 20 | 20 11 31 2d 20 11 33 79 | .3y | .1- .3y|
|00000a40| 0d 0b 00 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |... | |
|00000a50| 20 20 11 32 32 20 20 20 | 20 31 0d 0b 00 20 20 20 | .22 | 1... |
|00000a60| 20 20 11 33 79 20 11 31 | 2d 20 11 33 79 20 20 11 | .3y .1|- .3y .|
|00000a70| 31 3d 20 11 34 32 32 32 | 32 32 32 32 11 31 28 11 |1= .4222|2222.1(.|
|00000a80| 33 78 20 11 31 2d 20 11 | 33 78 20 11 31 29 2e 0d |3x .1- .|3x .1)..|
|00000a90| 0b 00 20 20 20 20 20 20 | 20 20 20 20 11 32 31 20 |.. | .21 |
|00000aa0| 20 20 11 33 78 20 20 11 | 31 2d 20 11 33 78 20 20 | .3x .|1- .3x |
|00000ab0| 20 20 20 20 20 11 32 31 | 0d 0b 00 20 20 20 20 20 | .21|... |
|00000ac0| 20 20 20 20 20 20 20 20 | 20 20 32 20 20 20 20 31 | | 2 1|
|00000ad0| 0d 0a 00 11 31 54 68 69 | 73 20 69 73 20 73 6f 6d |....1Thi|s is som|
|00000ae0| 65 74 69 6d 65 73 20 63 | 61 6c 6c 65 64 20 74 68 |etimes c|alled th|
|00000af0| 65 20 12 31 74 77 6f 2d | 70 6f 69 6e 74 20 66 6f |e .1two-|point fo|
|00000b00| 72 6d 12 30 20 6f 66 20 | 74 68 65 20 65 71 75 61 |rm.0 of |the equa|
|00000b10| 74 69 6f 6e 20 6f 66 20 | 61 20 6c 69 6e 65 2e 0d |tion of |a line..|
|00000b20| 0a 00 53 65 63 74 69 6f | 6e 20 32 2e 31 20 20 4c |..Sectio|n 2.1 L|
|00000b30| 69 6e 65 73 20 69 6e 20 | 74 68 65 20 50 6c 61 6e |ines in |the Plan|
|00000b40| 65 0d 0b 00 12 31 4c 69 | 6e 65 61 72 20 65 78 74 |e....1Li|near ext|
|00000b50| 72 61 70 6f 6c 61 74 69 | 6f 6e 12 30 20 61 6e 64 |rapolati|on.0 and|
|00000b60| 20 12 31 6c 69 6e 65 61 | 72 20 69 6e 74 65 72 70 | .1linea|r interp|
|00000b70| 6f 6c 61 74 69 6f 6e 12 | 30 20 61 72 65 20 74 77 |olation.|0 are tw|
|00000b80| 6f 20 6d 65 74 68 6f 64 | 73 20 74 68 61 74 20 77 |o method|s that w|
|00000b90| 65 20 75 73 65 20 74 6f | 0d 0a 00 70 72 65 64 69 |e use to|...predi|
|00000ba0| 63 74 20 28 6f 72 20 65 | 73 74 69 6d 61 74 65 29 |ct (or e|stimate)|
|00000bb0| 20 11 33 79 11 31 2d 76 | 61 6c 75 65 73 2e 20 20 | .3y.1-v|alues. |
|00000bc0| 46 6f 72 20 69 6e 73 74 | 61 6e 63 65 2c 20 73 75 |For inst|ance, su|
|00000bd0| 70 70 6f 73 65 20 77 65 | 20 61 72 65 20 67 69 76 |ppose we| are giv|
|00000be0| 65 6e 20 74 77 6f 20 0d | 0a 00 70 6f 69 6e 74 73 |en two .|..points|
|00000bf0| 0d 0a 00 0d 0b 00 20 20 | 20 20 20 28 11 33 78 20 |...... | (.3x |
|00000c00| 11 31 2c 20 11 33 79 20 | 11 31 29 20 20 61 6e 64 |.1, .3y |.1) and|
|00000c10| 20 20 28 11 33 78 20 11 | 31 2c 20 11 33 79 20 11 | (.3x .|1, .3y .|
|00000c20| 31 29 2e 0d 0b 00 20 20 | 20 20 20 20 20 11 32 31 |1).... | .21|
|00000c30| 20 20 20 31 20 20 20 20 | 20 20 20 20 20 20 32 20 | 1 | 2 |
|00000c40| 20 20 32 0d 0a 00 11 31 | 54 6f 20 75 73 65 20 6c | 2....1|To use l|
|00000c50| 69 6e 65 61 72 20 65 78 | 74 72 61 70 6f 6c 61 74 |inear ex|trapolat|
|00000c60| 69 6f 6e 20 6f 72 20 69 | 6e 74 65 72 70 6f 6c 61 |ion or i|nterpola|
|00000c70| 74 69 6f 6e 2c 20 77 65 | 20 61 73 73 75 6d 65 20 |tion, we| assume |
|00000c80| 74 68 61 74 20 11 33 78 | 20 11 31 61 6e 64 20 11 |that .3x| .1and .|
|00000c90| 33 79 20 11 31 68 61 76 | 65 0d 0a 00 61 20 6c 69 |3y .1hav|e...a li|
|00000ca0| 6e 65 61 72 20 72 65 6c | 61 74 69 6f 6e 73 68 69 |near rel|ationshi|
|00000cb0| 70 2e 20 20 54 68 65 6e | 2c 20 77 65 20 66 69 6e |p. Then|, we fin|
|00000cc0| 64 20 74 68 65 20 65 71 | 75 61 74 69 6f 6e 20 6f |d the eq|uation o|
|00000cd0| 66 20 74 68 65 20 6c 69 | 6e 65 20 70 61 73 73 69 |f the li|ne passi|
|00000ce0| 6e 67 20 0d 0a 00 74 68 | 72 6f 75 67 68 20 74 68 |ng ...th|rough th|
|00000cf0| 65 20 74 77 6f 20 67 69 | 76 65 6e 20 70 6f 69 6e |e two gi|ven poin|
|00000d00| 74 73 2e 20 20 55 73 69 | 6e 67 20 74 68 69 73 20 |ts. Usi|ng this |
|00000d10| 65 71 75 61 74 69 6f 6e | 2c 20 77 65 20 63 61 6e |equation|, we can|
|00000d20| 20 70 72 65 64 69 63 74 | 20 11 33 79 11 31 2d 76 | predict| .3y.1-v|
|00000d30| 61 6c 75 65 73 0d 0a 00 | 74 68 61 74 20 63 6f 72 |alues...|that cor|
|00000d40| 72 65 73 70 6f 6e 64 20 | 74 6f 20 11 33 78 11 31 |respond |to .3x.1|
|00000d50| 2d 76 61 6c 75 65 73 2c | 20 6f 74 68 65 72 20 74 |-values,| other t|
|00000d60| 68 61 6e 20 74 68 65 20 | 74 77 6f 20 67 69 76 65 |han the |two give|
|00000d70| 6e 20 11 33 78 11 31 2d | 76 61 6c 75 65 73 2e 20 |n .3x.1-|values. |
|00000d80| 20 57 68 65 6e 20 74 68 | 65 0d 0a 00 70 72 65 64 | When th|e...pred|
|00000d90| 69 63 74 65 64 20 70 6f | 69 6e 74 20 6c 69 65 73 |icted po|int lies|
|00000da0| 20 62 65 74 77 65 65 6e | 20 74 68 65 20 74 77 6f | between| the two|
|00000db0| 20 67 69 76 65 6e 20 70 | 6f 69 6e 74 73 2c 20 77 | given p|oints, w|
|00000dc0| 65 20 63 61 6c 6c 20 74 | 68 65 20 6d 65 74 68 6f |e call t|he metho|
|00000dd0| 64 20 0d 0a 00 6c 69 6e | 65 61 72 20 69 6e 74 65 |d ...lin|ear inte|
|00000de0| 72 70 6f 6c 61 74 69 6f | 6e 2e 20 20 4f 74 68 65 |rpolatio|n. Othe|
|00000df0| 72 77 69 73 65 2c 20 69 | 74 20 69 73 20 63 61 6c |rwise, i|t is cal|
|00000e00| 6c 65 64 20 6c 69 6e 65 | 61 72 20 65 78 74 72 61 |led line|ar extra|
|00000e10| 70 6f 6c 61 74 69 6f 6e | 2e 0d 0a 00 53 65 63 74 |polation|....Sect|
|00000e20| 69 6f 6e 20 32 2e 31 20 | 20 4c 69 6e 65 73 20 69 |ion 2.1 | Lines i|
|00000e30| 6e 20 74 68 65 20 50 6c | 61 6e 65 0d 0b 00 54 68 |n the Pl|ane...Th|
|00000e40| 65 20 12 31 73 6c 6f 70 | 65 2d 69 6e 74 65 72 63 |e .1slop|e-interc|
|00000e50| 65 70 74 20 66 6f 72 6d | 12 30 20 6f 66 20 74 68 |ept form|.0 of th|
|00000e60| 65 20 65 71 75 61 74 69 | 6f 6e 20 6f 66 20 61 20 |e equati|on of a |
|00000e70| 6c 69 6e 65 20 69 73 20 | 75 73 65 66 75 6c 20 66 |line is |useful f|
|00000e80| 6f 72 20 73 6b 65 74 63 | 68 69 6e 67 0d 0a 00 74 |or sketc|hing...t|
|00000e90| 68 65 20 67 72 61 70 68 | 20 6f 66 20 61 20 6c 69 |he graph| of a li|
|00000ea0| 6e 65 2e 20 20 42 79 20 | 77 72 69 74 69 6e 67 20 |ne. By |writing |
|00000eb0| 74 68 65 20 65 71 75 61 | 74 69 6f 6e 20 6f 66 20 |the equa|tion of |
|00000ec0| 61 20 6c 69 6e 65 20 69 | 6e 20 74 68 65 20 66 6f |a line i|n the fo|
|00000ed0| 72 6d 0d 0a 00 0d 0b 00 | 20 20 20 20 20 11 33 79 |rm......| .3y|
|00000ee0| 20 11 31 3d 20 11 33 6d | 78 20 11 31 2b 20 11 33 | .1= .3m|x .1+ .3|
|00000ef0| 62 0d 0a 00 0d 0b 00 11 | 31 77 65 20 63 61 6e 20 |b.......|1we can |
|00000f00| 73 65 65 20 74 68 61 74 | 20 74 68 65 20 73 6c 6f |see that| the slo|
|00000f10| 70 65 20 6f 66 20 74 68 | 65 20 6c 69 6e 65 20 69 |pe of th|e line i|
|00000f20| 73 20 11 33 6d 20 11 31 | 61 6e 64 20 74 68 65 20 |s .3m .1|and the |
|00000f30| 11 33 79 11 31 2d 69 6e | 74 65 72 63 65 70 74 20 |.3y.1-in|tercept |
|00000f40| 69 73 20 28 30 2c 20 11 | 33 62 11 31 29 2e 0d 0a |is (0, .|3b.1)...|
|00000f50| 00 46 6f 72 20 69 6e 73 | 74 61 6e 63 65 2c 20 62 |.For ins|tance, b|
|00000f60| 79 20 77 72 69 74 69 6e | 67 20 74 68 65 20 65 71 |y writin|g the eq|
|00000f70| 75 61 74 69 6f 6e 20 32 | 11 33 78 20 11 31 2b 20 |uation 2|.3x .1+ |
|00000f80| 33 11 33 79 20 11 31 3d | 20 34 20 69 6e 20 74 68 |3.3y .1=| 4 in th|
|00000f90| 65 20 66 6f 72 6d 0d 0a | 00 20 20 20 20 20 20 20 |e form..|. |
|00000fa0| 20 20 20 32 20 20 20 20 | 34 0d 0b 00 20 20 20 20 | 2 |4... |
|00000fb0| 20 11 33 79 20 11 31 3d | 20 2d 11 34 32 11 33 78 | .3y .1=| -.42.3x|
|00000fc0| 20 11 31 2b 20 11 34 32 | 0d 0b 00 20 20 20 20 20 | .1+ .42|... |
|00000fd0| 20 20 20 20 20 11 31 33 | 20 20 20 20 33 0d 0a 00 | .13| 3...|
|00000fe0| 77 65 20 63 61 6e 20 73 | 65 65 20 74 68 61 74 20 |we can s|ee that |
|00000ff0| 74 68 65 20 6c 69 6e 65 | 20 68 61 73 20 61 20 73 |the line| has a s|
|00001000| 6c 6f 70 65 20 6f 66 20 | 11 33 6d 20 11 31 3d 20 |lope of |.3m .1= |
|00001010| 2d 32 2f 33 20 61 6e 64 | 20 74 68 65 20 11 33 79 |-2/3 and| the .3y|
|00001020| 11 31 2d 69 6e 74 65 72 | 63 65 70 74 20 69 73 20 |.1-inter|cept is |
|00001030| 0d 0a 00 28 30 2c 20 34 | 2f 33 29 2e 0d 0a 00 53 |...(0, 4|/3)....S|
|00001040| 65 63 74 69 6f 6e 20 32 | 2e 31 20 20 4c 69 6e 65 |ection 2|.1 Line|
|00001050| 73 20 69 6e 20 74 68 65 | 20 50 6c 61 6e 65 0d 0b |s in the| Plane..|
|00001060| 00 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |. | |
|00001070| 20 20 20 20 20 20 12 31 | 53 75 6d 6d 61 72 79 20 | .1|Summary |
|00001080| 6f 66 20 45 71 75 61 74 | 69 6f 6e 73 20 6f 66 20 |of Equat|ions of |
|00001090| 4c 69 6e 65 73 12 30 0d | 0a 00 0d 0b 00 31 2e 20 |Lines.0.|.....1. |
|000010a0| 20 12 31 47 65 6e 65 72 | 61 6c 20 66 6f 72 6d 12 | .1Gener|al form.|
|000010b0| 30 3a 20 20 20 20 20 20 | 20 20 20 20 20 20 20 11 |0: | .|
|000010c0| 33 41 78 20 11 31 2b 20 | 11 33 42 79 20 11 31 2b |3Ax .1+ |.3By .1+|
|000010d0| 20 11 33 43 20 11 31 3d | 20 30 0d 0a 00 0d 0b 00 | .3C .1=| 0......|
|000010e0| 32 2e 20 20 12 31 56 65 | 72 74 69 63 61 6c 20 6c |2. .1Ve|rtical l|
|000010f0| 69 6e 65 12 30 3a 20 20 | 20 20 20 20 20 20 20 20 |ine.0: | |
|00001100| 20 20 11 33 78 20 11 31 | 3d 20 11 33 61 0d 0a 00 | .3x .1|= .3a...|
|00001110| 0d 0b 00 11 31 33 2e 20 | 20 12 31 48 6f 72 69 7a |....13. | .1Horiz|
|00001120| 6f 6e 74 61 6c 20 6c 69 | 6e 65 12 30 3a 20 20 20 |ontal li|ne.0: |
|00001130| 20 20 20 20 20 20 20 11 | 33 79 20 11 31 3d 20 11 | .|3y .1= .|
|00001140| 33 62 0d 0a 00 0d 0b 00 | 11 31 34 2e 20 20 12 31 |3b......|.14. .1|
|00001150| 53 6c 6f 70 65 2d 69 6e | 74 65 72 63 65 70 74 20 |Slope-in|tercept |
|00001160| 66 6f 72 6d 12 30 3a 20 | 20 20 20 20 11 33 79 20 |form.0: | .3y |
|00001170| 11 31 3d 20 11 33 6d 78 | 20 11 31 2b 20 11 33 62 |.1= .3mx| .1+ .3b|
|00001180| 0d 0a 00 0d 0b 00 11 31 | 35 2e 20 20 12 31 50 6f |.......1|5. .1Po|
|00001190| 69 6e 74 2d 73 6c 6f 70 | 65 20 66 6f 72 6d 12 30 |int-slop|e form.0|
|000011a0| 3a 20 20 20 20 20 20 20 | 20 20 11 33 79 20 11 31 |: | .3y .1|
|000011b0| 2d 20 11 33 79 20 20 11 | 31 3d 20 11 33 6d 11 31 |- .3y .|1= .3m.1|
|000011c0| 28 11 33 78 20 11 31 2d | 20 11 33 78 20 11 31 29 |(.3x .1-| .3x .1)|
|000011d0| 0d 0b 00 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |... | |
|000011e0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000011f0| 20 20 20 20 20 20 11 32 | 31 20 20 20 20 20 20 20 | .2|1 |
|00001200| 20 20 20 31 20 20 20 20 | 20 20 20 20 20 20 20 20 | 1 | |
|00001210| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001220| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001230| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 11 31 2e | | .1.|
|00001240| 0d 0a 00 53 65 63 74 69 | 6f 6e 20 32 2e 31 20 20 |...Secti|on 2.1 |
|00001250| 4c 69 6e 65 73 20 69 6e | 20 74 68 65 20 50 6c 61 |Lines in| the Pla|
|00001260| 6e 65 0d 0b 00 57 65 20 | 6b 6e 6f 77 20 66 72 6f |ne...We |know fro|
|00001270| 6d 20 67 65 6f 6d 65 74 | 72 79 20 74 68 61 74 20 |m geomet|ry that |
|00001280| 74 77 6f 20 6c 69 6e 65 | 73 20 69 6e 20 61 20 70 |two line|s in a p|
|00001290| 6c 61 6e 65 20 61 72 65 | 20 12 31 70 61 72 61 6c |lane are| .1paral|
|000012a0| 6c 65 6c 12 30 20 69 66 | 20 74 68 65 79 0d 0a 00 |lel.0 if| they...|
|000012b0| 64 6f 20 6e 6f 74 20 69 | 6e 74 65 72 73 65 63 74 |do not i|ntersect|
|000012c0| 2e 20 20 49 6e 20 74 65 | 72 6d 73 20 6f 66 20 73 |. In te|rms of s|
|000012d0| 6c 6f 70 65 2c 20 77 65 | 20 68 61 76 65 20 74 68 |lope, we| have th|
|000012e0| 65 20 66 6f 6c 6c 6f 77 | 69 6e 67 20 72 75 6c 65 |e follow|ing rule|
|000012f0| 2e 0d 0a 00 0d 0a 00 54 | 77 6f 20 64 69 73 74 69 |.......T|wo disti|
|00001300| 6e 63 74 20 6e 6f 6e 76 | 65 72 74 69 63 61 6c 20 |nct nonv|ertical |
|00001310| 6c 69 6e 65 73 20 61 72 | 65 20 70 61 72 61 6c 6c |lines ar|e parall|
|00001320| 65 6c 20 69 66 20 61 6e | 64 20 6f 6e 6c 79 20 69 |el if an|d only i|
|00001330| 66 20 74 68 65 69 72 20 | 73 6c 6f 70 65 73 20 61 |f their |slopes a|
|00001340| 72 65 0d 0a 00 65 71 75 | 61 6c 2e 0d 0a 00 0d 0a |re...equ|al......|
|00001350| 00 46 6f 72 20 69 6e 73 | 74 61 6e 63 65 2c 20 74 |.For ins|tance, t|
|00001360| 68 65 20 74 77 6f 20 6c | 69 6e 65 73 0d 0a 00 0d |he two l|ines....|
|00001370| 0b 00 20 20 20 20 20 11 | 33 79 20 11 31 3d 20 33 |.. .|3y .1= 3|
|00001380| 11 33 78 20 11 31 2b 20 | 34 20 20 20 61 6e 64 20 |.3x .1+ |4 and |
|00001390| 20 20 11 33 79 20 11 31 | 3d 20 33 11 33 78 20 11 | .3y .1|= 3.3x .|
|000013a0| 31 2d 20 35 0d 0a 00 0d | 0b 00 61 72 65 20 70 61 |1- 5....|..are pa|
|000013b0| 72 61 6c 6c 65 6c 20 62 | 65 63 61 75 73 65 20 69 |rallel b|ecause i|
|000013c0| 6e 20 62 6f 74 68 20 63 | 61 73 65 73 20 11 33 6d |n both c|ases .3m|
|000013d0| 20 11 31 3d 20 33 2e 0d | 0a 00 53 65 63 74 69 6f | .1= 3..|..Sectio|
|000013e0| 6e 20 32 2e 31 20 20 4c | 69 6e 65 73 20 69 6e 20 |n 2.1 L|ines in |
|000013f0| 74 68 65 20 50 6c 61 6e | 65 0d 0b 00 57 65 20 6b |the Plan|e...We k|
|00001400| 6e 6f 77 20 66 72 6f 6d | 20 67 65 6f 6d 65 74 72 |now from| geometr|
|00001410| 79 20 74 68 61 74 20 74 | 77 6f 20 6c 69 6e 65 73 |y that t|wo lines|
|00001420| 20 69 6e 20 61 20 70 6c | 61 6e 65 20 61 72 65 20 | in a pl|ane are |
|00001430| 12 31 70 65 72 70 65 6e | 64 69 63 75 6c 61 72 12 |.1perpen|dicular.|
|00001440| 30 20 69 66 20 74 68 65 | 79 0d 0a 00 20 20 20 20 |0 if the|y... |
|00001450| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001460| 20 20 11 34 6f 0d 0b 00 | 11 31 69 6e 74 65 72 73 | .4o...|.1inters|
|00001470| 65 63 74 20 61 74 20 72 | 69 67 68 74 20 28 39 30 |ect at r|ight (90|
|00001480| 20 29 20 61 6e 67 6c 65 | 73 2e 20 20 49 6e 20 74 | ) angle|s. In t|
|00001490| 65 72 6d 73 20 6f 66 20 | 73 6c 6f 70 65 2c 20 77 |erms of |slope, w|
|000014a0| 65 20 68 61 76 65 20 74 | 68 65 20 66 6f 6c 6c 6f |e have t|he follo|
|000014b0| 77 69 6e 67 0d 0a 00 0d | 0b 00 72 75 6c 65 2e 0d |wing....|..rule..|
|000014c0| 0a 00 0d 0a 00 54 77 6f | 20 6e 6f 6e 76 65 72 74 |.....Two| nonvert|
|000014d0| 69 63 61 6c 20 6c 69 6e | 65 73 20 77 68 6f 73 65 |ical lin|es whose|
|000014e0| 20 73 6c 6f 70 65 73 20 | 61 72 65 20 11 33 6d 20 | slopes |are .3m |
|000014f0| 20 11 31 61 6e 64 20 11 | 33 6d 20 20 11 31 61 72 | .1and .|3m .1ar|
|00001500| 65 20 70 65 72 70 65 6e | 64 69 63 75 6c 61 72 20 |e perpen|dicular |
|00001510| 69 66 20 61 6e 64 20 6f | 6e 6c 79 20 0d 0b 00 20 |if and o|nly ... |
|00001520| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001530| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001540| 20 20 20 20 20 20 20 11 | 32 31 20 20 20 20 20 20 | .|21 |
|00001550| 32 0d 0a 00 11 31 69 66 | 20 74 68 65 69 72 20 73 |2....1if| their s|
|00001560| 6c 6f 70 65 73 20 61 72 | 65 20 12 31 6e 65 67 61 |lopes ar|e .1nega|
|00001570| 74 69 76 65 20 72 65 63 | 69 70 72 6f 63 61 6c 73 |tive rec|iprocals|
|00001580| 12 30 20 6f 66 20 65 61 | 63 68 20 6f 74 68 65 72 |.0 of ea|ch other|
|00001590| 2e 20 20 54 68 61 74 20 | 69 73 2c 0d 0a 00 0d 0a |. That |is,.....|
|000015a0| 00 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |. | |
|000015b0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000015c0| 31 0d 0b 00 20 20 20 20 | 20 20 20 20 20 20 20 20 |1... | |
|000015d0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 11 33 6d | | .3m|
|000015e0| 20 20 11 31 3d 20 2d 11 | 34 32 32 11 31 2e 0d 0b | .1= -.|422.1...|
|000015f0| 00 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |. | |
|00001600| 20 20 20 20 20 20 20 20 | 20 20 20 11 32 31 20 20 | | .21 |
|00001610| 20 20 11 33 6d 0d 0b 00 | 20 20 20 20 20 20 20 20 | .3m...| |
|00001620| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001630| 20 20 20 20 20 20 20 20 | 11 32 32 0d 0a 00 20 20 | |.22... |
|00001640| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001650| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001660| 20 20 20 20 20 20 20 20 | 20 20 11 31 31 0d 0b 00 | | .11...|
|00001670| 46 6f 72 20 69 6e 73 74 | 61 6e 63 65 2c 20 74 68 |For inst|ance, th|
|00001680| 65 20 6c 69 6e 65 73 20 | 11 33 79 20 11 31 3d 20 |e lines |.3y .1= |
|00001690| 33 11 33 78 20 11 31 2d | 20 32 20 61 6e 64 20 11 |3.3x .1-| 2 and .|
|000016a0| 33 79 20 11 31 3d 20 2d | 11 34 32 11 33 78 20 11 |3y .1= -|.42.3x .|
|000016b0| 31 2b 20 35 20 61 72 65 | 20 70 65 72 70 65 6e 64 |1+ 5 are| perpend|
|000016c0| 69 63 75 6c 61 72 2e 0d | 0b 00 20 20 20 20 20 20 |icular..|.. |
|000016d0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000016e0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000016f0| 20 20 20 20 20 20 33 0d | 0a 00 35 00 00 00 b7 01 | 3.|..5.....|
|00001700| 00 00 4d 25 00 00 10 00 | 00 00 00 00 00 00 63 68 |..M%....|......ch|
|00001710| 61 70 32 00 0b 02 00 00 | c7 01 00 00 4d 1f 00 00 |ap2.....|....M...|
|00001720| ec 01 00 00 00 00 00 00 | 73 32 2d 31 00 f1 03 00 |........|s2-1....|
|00001730| 00 18 03 00 00 4d 1f 00 | 00 d2 03 00 00 00 00 00 |.....M..|........|
|00001740| 00 73 32 2d 31 2d 31 00 | 28 07 00 00 fa 03 00 00 |.s2-1-1.|(.......|
|00001750| 4d 1f 00 00 09 07 00 00 | 00 00 00 00 73 32 2d 31 |M.......|....s2-1|
|00001760| 2d 32 00 41 0b 00 00 db | 02 00 00 4d 1f 00 00 22 |-2.A....|...M..."|
|00001770| 0b 00 00 00 00 00 00 73 | 32 2d 31 2d 33 00 3b 0e |.......s|2-1-3.;.|
|00001780| 00 00 04 02 00 00 4d 1f | 00 00 1c 0e 00 00 00 00 |......M.|........|
|00001790| 00 00 73 32 2d 31 2d 34 | 00 5e 10 00 00 e5 01 00 |..s2-1-4|.^......|
|000017a0| 00 4d 1f 00 00 3f 10 00 | 00 00 00 00 00 73 32 2d |.M...?..|.....s2-|
|000017b0| 31 2d 35 00 62 12 00 00 | 78 01 00 00 4d 1f 00 00 |1-5.b...|x...M...|
|000017c0| 43 12 00 00 00 00 00 00 | 73 32 2d 31 2d 36 00 f9 |C.......|s2-1-6..|
|000017d0| 13 00 00 01 03 00 00 4d | 1f 00 00 da 13 00 00 00 |.......M|........|
|000017e0| 00 00 00 73 32 2d 31 2d | 37 00 |...s2-1-|7. |
+--------+-------------------------+-------------------------+--------+--------+